Part Number Hot Search : 
MM18TAN PQ12R04 IRGPC20K SG1627 TC654 51123 APTGT200 AZT71QG
Product Description
Full Text Search
 

To Download IRHLF77214 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings parameter units i d @ v gs = 4.5v, t c =25c continuous drain current 3.3 i d @ v gs = 4.5v, t c =100c continuous drain current 2.1 i dm pulsed drain current  13.2 p d @ t c = 25c max. power dissipation 22.7 w linear derating factor 0.18 w/c v gs gate-to-source voltage 10 v e as single pulse avalanche energy  29 mj i ar avalanche current  3.3 a e ar repetitive avalanche energy  2.3 mj dv/dt peak diode recovery dv/dt  3.29 v/ns t j operating junction -55 to 150 t stg storage temperature range lead temperature 300 (0.063in/1.6mm from case for 10s) weight 0.98 (typical) g c a  www.irf.com 1 technology product summary part number radiation level r ds(on) i d IRHLF77214 100k rads (si) 1.0 ? 3.3a irhlf73214 300k rads (si) 1.0 ? 3.3a for footnotes refer to the last page pre-irradiation radiation hardened IRHLF77214 logic level power mosfet 250v, n-channel thru-hole (to-39) features:   5v cmos and ttl compatible  fast switching  single event effect (see) hardened  low total gate charge  simple drive requirements  ease of paralleling  hermetically sealed  light weight  to-39 2n7610t2 international rectifier?s r7 tm logic level power mosfets provide simple solution to interfacing cmos and ttl control circuits to power devices in space and other radiation environments.the threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation.this is achieved while maintaining single event gate rupture and single event burnout immunity. the device is ideal when used to interface directly with most logic gates, linear ic?s, micro-controllers, and other device types that operate from a 3.3-5v source. it may also be used to increase the output current of a pwm, voltage comparator or an operational amplifier where the logic level drive signal is available. pd-97253b
IRHLF77214, 2n7610t2 pre-irradiation 2 www.irf.com source-drain diode ratings and characteristics parameter min typ max units test conditions i s continuous source current (body diode) ? ? 3.3 i sm pulse source current (body diode)  ? ? 13.2 v sd diode forward voltage ? ? 1.2 v t j = 25c, i s = 3.3a, v gs = 0v  t rr reverse recovery time ? ? 371 ns t j = 25c, i f = 3.3a, di/dt 100a/ s q rr reverse recovery charge ? ? 1.05 cv dd 25v  t on forward turn-on time intrinsic turn-on time is negligible. turn-on speed is substantially controlled by l s + l d . a for footnotes refer to the last page electrical characteristics @ tj = 25c (unless otherwise specified) parameter min typ max units test conditions bv dss drain-to-source breakdown voltage 250 ? ? v v gs = 0v, i d = 250 a ? bv dss / ? t j temperature coefficient of breakdown ? 0.22 ? v/c reference to 25c, i d = 1.0ma voltage r ds(on) static drain-to-source on-state ? ? 1.0 ? v gs = 4.5v, i d = 2.1a resistance v gs(th) gate threshold voltage 1.0 ? 2.0 v v ds = v gs , i d = 250 a ? v gs(th) / ? t j gate threshold voltage coefficient ? -5.2 ? mv/c g fs forward transconductance 2.5 ? ? s v ds = 15v, i ds = 2.1a  i dss zero gate voltage drain current ? ? 1.0 v ds = 200v ,v gs = 0v ??10 v ds = 200v, v gs = 0v, t j =125c i gss gate-to-source leakage forward ? ? 100 v gs = 10v i gss gate-to-source leakage reverse ? ? -100 v gs = -10v q g total gate charge ? ? 18 v gs = 4.5v, i d = 3.3a q gs gate-to-source charge ? ? 5.0 nc v ds = 125v q gd gate-to-drain (?miller?) charge ? ? 12 t d (on) turn-on delay time ? ? 27 v dd = 125v, i d = 3.3a, t r rise time ? ? 57 v gs = 5.0v, r g = 7.5 ? t d (off) turn-off delay time ? ? 45 t f fall time ? ? 55 l s + l d total inductance ? 7.0 ? measured from drain lead (6mm /0.25in from pack.) to source lead (6mm/0.25in from pack.)with source wire internally bonded from source pin to drain pad c iss input capacitance ? 611 ? v gs = 0v, v ds = 25v c oss output capacitance ? 62 ? pf f = 1.0mhz c rss reverse transfer capacitance ? 0.64 ? na  nh ns a thermal resistance parameter min typ max units test conditions r thjc junction-to-case ? ? 5.5 c/w note: corresponding spice and saber models are available on international rectifier web site. r g gate resistance ? 8.0 ? ? f = 1.0mhz, open drain
www.irf.com 3 pre-irradiation IRHLF77214, 2n7610t2 international rectifier radiation hardened mosfets are tested to verify their radiation hardness capabil- ity. the hardness assurance program at international rectifier is comprised of two radiation environments. every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the to-39 package. both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. radiation characteristics international rectifier radiation hardened mosfets have been characterized in heavy ion environment for single event effects (see). single event effects characterization is illustrated in fig. a and table 2. for footnotes refer to the last page fig a. typical single event effect, safe operating area table 1. electrical characteristics @ tj = 25c, post total dose irradiation  parameter up to 300k rads(si) 1 units test conditions min max bv dss drain-to-source breakdown voltage 250 ? v v gs = 0v, i d = 250a v gs(th) gate threshold voltage 1.0 2.0 v gs = v ds , i d = 250a i gss gate-to-source leakage forward ? 100 na v gs = 10v i gss gate-to-source leakage reverse ? -100 v gs = -10v i dss zero gate voltage drain current ? 1.0 a v ds = 200v, v gs = 0v r ds(on) static drain-to-source  on-state resistance (to-39) ? 1.0 ? v gs = 4.5v, i d = 2.1a v sd diode forward voltage  ? 1.2 v v gs = 0v, i d = 3.3a 1. part numbers IRHLF77214, irhlf73214 table 2. typical single event effect safe operating area let energy range vds (v) (mev/(m g /cm 2 )) (mev) (m) @vgs= @vgs= @vgs= @vgs= @vgs= @vgs= 0v -2v -4v -5v -6v -7v 38 5% 300 7.5% 38 7.5% 250 250 250 250 250 250 62 5% 355 7.5% 33 7.5% 250 250 250 250 250 - 85 5% 380 7.5% 29 7.5% 250 250 250 250 - - 0 50 100 150 200 250 300 -7 -6 -5 -4 -3 -2 -1 0 bias vgs (volts) bias vds (volts) let=38 5% let=62 5% let=85 5%
IRHLF77214, 2n7610t2 pre-irradiation 4 www.irf.com fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 15 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c vgs top 10v 5.0v 4.5v 3.25v 2.75v 2.5v 2.25v bottom 2.0v 2.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 150c 2.0v vgs top 10v 5.0v 4.5v 3.25v 2.75v 2.5v 2.25v bottom 2.0v 2345678 v gs , gate-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v ds = 50v 6 0 s pulse width t j = 150c t j = 25c -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) v gs = 4.5v i d = 3.3a
www.irf.com 5 pre-irradiation IRHLF77214, 2n7610t2 fig 8. typical threshold voltage vs temperature fig 7 typical drain-to-source breakdown voltage vs temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 245 255 265 275 285 295 305 315 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) i d = 1.0ma -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 50a i d = 250a i d = 1.0ma i d = 150ma 2 4 6 8 10 12 v gs, gate -to -source voltage (v) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) i d = 3.3a t j = 25c t j = 150c 0 1 2 3 4 5 6 7 8 i d , drain current (a) 0.5 1 1.5 2 2.5 3 3.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) t j = 25c t j = 150c vgs = 4.5v fig 5. typical on-resistance vs gate voltage fig 6. typical on-resistance vs drain current
IRHLF77214, 2n7610t2 pre-irradiation 6 www.irf.com fig 11. typical source-to-drain diode forward voltage fig 12. maximum drain current vs. case temperature 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.01 0.1 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) v gs = 0v t j = 150c t j = 2 5 c 25 50 75 100 125 150 t c , case temperature (c) 0 0.5 1 1.5 2 2.5 3 3.5 i d , d r a i n c u r r e n t ( a ) fig 9. typical capacitance vs. drain-to-source voltage 1 10 100 v ds , drain-to-source voltage (v) 0 200 400 600 800 1000 1200 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss fig 10. typical gate charge vs. gate-to-source voltage 024681012141618202224 q g, total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 200v v ds = 125v v ds = 50v i d = 3.3a for test circuit see figure 17
www.irf.com 7 pre-irradiation IRHLF77214, 2n7610t2 fig 15. maximum effective transient thermal impedance, junction-to-case fig 13. maximum safe operating area fig 14. maximum avalanche energy vs. drain current 25 50 75 100 125 150 starting t j , junction temperature (c) 0 10 20 30 40 50 60 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 1.5a 2.1a bottom 3.3a 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1ms 10ms operation in this area limited by r ds (on) 100 s dc 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc p t t dm 1 2
IRHLF77214, 2n7610t2 pre-irradiation 8 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 17b. gate charge test circuit fig 17a. basic gate charge waveform v ds 90% 10% v gs t d(on) t r t d(off) t f fig 16a. unclamped inductive test circuit fig 16b. unclamped inductive waveforms t p v (br)dss i as fig 18a. switching time test circuit fig 18b. switching time waveforms r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v  v gs   
 1  

 0.1 %        + -    
www.irf.com 9 pre-irradiation IRHLF77214, 2n7610t2  pulse width 300 s; duty cycle 2%  total dose irradiation with v gs bias. 10 volt v gs applied and v ds = 0 during irradiation per mil-std-750, method 1019, condition a.  total dose irradiation with v ds bias. 200 volt v ds applied and v gs = 0 during irradiation per mll-std-750, method 1019, condition a.  repetitive rating; pulse width limited by maximum junction temperature.  v dd = 50v, starting t j = 25c, l = 5.4mh peak i l = 3.3a, v gs = 10v  i sd 3.3a, di/dt 372a/ s, v dd 250v, t j 150c footnotes: ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 02/2012 case outline and dimensions ? to-205af (modified to-39) legend 1- source 2- gate 3- drain


▲Up To Search▲   

 
Price & Availability of IRHLF77214

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X